Geometry - Chapter 4 Review (Part 2)

Match the following statements with the name of the definition, postulate, or theorem.

- 1) _____ An equilateral triangle is equiangular, 8) _ and conversely, an equiangular triangle is equilateral.
- 2) _____ If two angles and the included side in one triangle are congruent to two angles and the included side in another triangle, then the two triangles are congruent.
- 3) _____ The measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles.
- 4) _____ If a triangle has two congruent angles, then it is an isosceles triangle.
- 5) _____ The two angles in a triangle that are not adjacent to the indicated exterior angle.
- 6) _____ In an isosceles triangle, the bisector of the vertex angle is also the altitude and median to the base.
- 7) _____ The sum of the measures of the angles in a triangle are 180 degrees.

- 8) _____ If a triangle is isosceles, then its base angles are congruent.
- 9) _____ If two angles of one triangle are equal in measure to two angles of another triangle, then the third angle in each triangle is equal in measure to the third angle in the other triangle.
- 10)_____ If two angles and a non-included side in one triangle are congruent to two corresponding angles and a nonincluded side in another triangle, then the triangles are congruent.
 - A) Triangle Sum Theorem
 - B) Third Angle Theorem
 - C) Angle-Angle-Side (AAS or SAA) Congruence Postulate
 - D) Triangle Exterior Angle Theorem
 - E) Base Angles Theorem
 - F) Remote Interior Angles
 - G) Converse of the Base Angles Theorem
 - H) Equilateral Triangle Theorem
 - I) Angle-Side-Angle (ASA) Congruence Postulate
 - J) Vertex Angle Bisector Theorem
- 11) Use the information to complete the following flow chart proof.

12) Given: $\angle R \cong \angle T$ $\overline{RV} \cong \overline{TW}$ S is the midpoint of \overline{RT}

Prove: Δ SVW is isosceles

Statement	Reasons
S is the midpoint of \overline{RT}	
$\overline{RS} \cong \overline{TS}$	
$\angle R \cong \angle T$	
$\overline{RV} \cong \overline{TW}$	
$\Delta VRS \cong \Delta WTS$	
$\overline{VS} \cong \overline{WS}$	
Δ SVW is an isosceles Δ	

13)	Given:	Isosceles $\triangle ABC$ with $\overline{AC} \cong \overline{BC}$
		\overline{CD} a median to the base

Statement	Reasons
$\overline{AC} \cong \overline{BC}$	
\overline{CD} a median to the base	
D is the midpoint of \overline{AB}	
$\overline{AD} \cong \overline{BD}$	
$\overline{CD} \cong \overline{CD}$	
$\Delta ADC \cong \Delta BDC$	
$\angle 1 \cong \angle 2$	
\overline{CD} is the angle bisector of $\angle ACB$	

14) Given: M is the midpoint of both \overline{AB} and \overline{CD}

Prove: $\overline{AC} \cong \overline{BD}$	C B
Statement	Reasons

15) Given: $\overline{PX} \cong \overline{PY}$, \overline{ZP} bisects \overline{XY}

Prove: $\Delta PXZ \cong \Delta PYZ$

Statement	Reasons

16) Given: $\overline{MP} \parallel \overline{NS}, \overline{RS} \parallel \overline{PQ}, \overline{MR} \cong \overline{NQ}$ Prove: $\Delta MQP \cong \Delta NRS$

Statement	Reasons

17)	Given: Prove:	$\overline{LO} \cong \overline{MN}, \ \overrightarrow{LO} \mid\mid \overleftarrow{MN}$ $\angle MLN \cong \angle ONL$	
Statem	nent		Reasons

18) Given: $\angle OTS \cong \angle OES, \angle EOS \cong \angle OST$

Prove: $\overline{TO} \cong \overline{ES}$

Statement	Reasons
19) Given: $\overline{AM} \cong \overline{MB}$, $\overline{AD} \cong \overline{BC}$ $\angle MDC \cong \angle MCD$ Prove: $\overline{AC} \cong \overline{BD}$ Statement	D Z A Reasons M B
Surement	